$5^{\text {TH }}$ Grade

GEOME

 AND

MEASUREMENT

Created By:
Misty Pohly

Whole class Lessons and Guided Math Groups Active ensagement and Games Intervention and Enrichment

EXit Tickets

I Plan ~ You Teach

Helping you live your life AND

be the math teacher that gets results
are you Ready for Help?
Click the links for Lesson Plans that $\quad 4^{\text {th }}$ Grade Math align with TEXAS TEKS!

2 2nd $^{\text {Grade Math }}$ Lesson Plans Lesson Plans
$3{ }^{\text {rd }}$ Grade Math Lesson Plans

$5^{\text {th }}$ Grade Math Lesson Plans

I SEE YOU~

- struggling each week to write lesson plans that meet the rigor of the TEKS.
- searching endlessly for resources that will help kids learn math while being challenged and engaged.
- staying late everyday after school working on plans and creating everything from scratch.
You are exhausted from working with students all day, and still have to prep, write and create.

I SEE YOU~
SACRIFICING your time with your family and friends
to ensure success for ALL of OUR Children.
Want to know when sales are happening? Click links to follow
(P)
©iPohly INC

Geometry And Measurement

Name	1	2	3	4	5	6	7

\qquad

LT	Statement	1	2	3	4	Evidence
$\begin{gathered} 1 \\ 5.4 G \end{gathered}$	I can use concrete objects and pictorial models to develop the formulas for the volume of a rectangular prism, including the special form for a cube $(V=I \times w \times h$, $V=s \times s \times s$, and $V=b h$).					
$\begin{gathered} 2 \\ 5.5 \mathrm{~A} \end{gathered}$	I can classify two-dimensional figures in a hierarchy of sets and subsets using graphic organizers based on their attributes and properties.					
$\begin{gathered} 3 \\ 5.4 H \end{gathered}$	I can represent problems related to perimeter and/or area and related to volume.					
$\begin{gathered} 4 \\ 5.4 \mathrm{H} \end{gathered}$	I can solve problems related to perimeter and/or area and related to volume.					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

\qquad

LT	Statement	1	2	3	4	Evidence
$\begin{gathered} 5 \\ 5.6 \mathrm{~A} \end{gathered}$	I can recognize a cube with side length of one unit as a unit cube having one cubic unit of volume and the volume of a threedimensional figure as the number of unit cubes (n cubic units) needed to fill it with no gaps or overlaps if possible.					
$\begin{gathered} 6 \\ 5.6 B \end{gathered}$	I can determine the volume of a rectangular prism with whole number side lengths in problems related to the number of layers times the number of unit cubes in the area of the base.					
$\begin{gathered} 7 \\ 5.7 \mathrm{~A} \end{gathered}$	I can solve problems by calculating conversions within a measurement system, customary or metric.					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} \text { । } \\ 5.4 G \end{gathered}$	Use concrete objects and pictorial models to develop the formulas for the volume of a rectangular prism, including the special form for a cube ($V=1 x$ $w \times h, V=s \times s \times s$, and $V=B h$).	Concrete objects and pictorial models to develop formulas for volume Rectangular prism $\begin{aligned} & V=1 \times w \times h, \\ & V=B h, \end{aligned}$ Cube $\begin{aligned} & V=s \times s \times s, \\ & V=B h, \end{aligned}$	Small Group Instruction: Students should fill rectangles and squares to find the total volume. Connect to the area model of one level at a time to add the height understanding.	Model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes.
$\begin{gathered} 2 \\ 5.5 \mathrm{~A} \end{gathered}$	Classify two-dimensional figures in a hierarchy of sets and subsets using graphic organizers based on their attributes and properties.	Attributes of twodimensional figures Congruent Parallel line notation Perpendicular line notation Types of twodimensional figures Circle Polygon Triangle Scalene Isosceles Equilateral Quadrilaterals Trapezoid Parallelogram Rectangle Rhombus Square 5-12 sided figures Graphic Organizers Generalizations	Understand how to organize the classification of shapes in a multi-column table Understand the hierarchical structure of a graphic organizer Understand the definitions and characteristics of quadrilaterals, rhombuses, polygons, circles, triangles, parallelograms, squares, and rectangles - Understand the hierarchy relationships between quadrilaterals, rhombuses, polygons, circles, triangles, parallelograms, squares, and rectangles \square Understand the definitions of right angles, acute angles, and obtuse angles Understand how to identify angles within two-dimensional figures (square, rectangle, triangle, parallelogram, pentagon, hexagon, rhombus, trapezoid)	Create graphic organizers based on attributes of their choosing.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 3 \\ 5.4 H \end{gathered}$	Represent problems related to perimeter and/or area and related to volume.	Perimeter \square Perimeter is a one-dimensional linear measure. \square Whole number, decimal, or fractional side lengths	Understand and apply the formula for the	Write equations that represent problems related to the area of rectangles,
$\begin{gathered} 4 \\ 5.4 H \end{gathered}$	Solve problems related to	lengths with and without models Determine perimeter by measuring to	perimeter, area and	parallelograms, trapezoids, and
	related to perimeter and/or	determine side lengths	volume	triangles and volume of right
	area and related to volume.	\square Determine missing side length when given perimeter and remaining side	how to	rectangular
		lengths		prisms where
		\square Perimeter of composite figures	an unknown	dimensions are
		Area	dimension	positive rational
		\square Perimeter is a two-dimensional	of a figure	numbers.
		square unit measure.	using other	\square Determine
		side lengths	dimensions within a	solutions for
		- Determine area when given side	composite	involving the
		lengths with and without models	figure	area of
		Determine area by measuring to determine side lengths \square Area of composite figures	\square Understand and apply	rectangles, parallelograms,
		\square Recognition of both perimeter and	the	trapezoids, and
		area embedded in mathematical and	formula of	triangles and volume of right
		real-world problem situations	perimeter,	
		Volume	area and	rectangular
		- One way to measure volume is a	volume of	prisms where
		three-dimensional cubic measure.	a square.	dimensions are
		\square Whole number, decimal, or fractional	\square Solve a	positive rational
		side lengths	problem	numbers.
		\square Formulas for volume for Grade 5 STAAR Mathematics Reference Materials	involving	
			perimeter,	
		Materials	area and	
		Determine volume when given side	volume	
		Determine volume by measuring	\square Unders	
			how to use	
		\square Determine missing side length given volume and remaining sid lengths Volume of composite figures	a ruler to	
			measure a	
			line	
			segment	

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 5 \\ 5.6 \mathrm{~A} \end{gathered}$	Recognize a cube with side length of one unit as a unit cube having one cubic unit of volume and the volume of a threedimensional figure as the number of unit cubes (n cubic units) needed to fill it with no gaps or overlaps if possible.	\square Three-dimensional figure a figure that has measurements including length, width (depth), and height \square Cube (special form of a rectangular prism) \square Relationships between units used to measure one-, twoand three-dimensional figures One-dimensional figures are measured using linear units. \square Two-dimensional figures are measured using square units. Three-dimensional figures are measured using cubic units. \square Volume - the measurement attribute of the amount of space occupied by matter \square One way to measure volume is a three-dimensional cubic measure. Volume is measured by counting the number of unit cubes that fill the space with no gaps or overlaps.	\square Understand how to interpret a model to determine the dimensions of a three-dimensional figure Understand that the volume of a rectangular prism can be found by multiplying the number of unit cubes that it takes to cover the base times the number of rows it takes to fill the cube with no gaps or overlaps Understand that the volume of a cube can be found by multiplying the length \times width \times height Solve a problem involving volume	\square Increase the complexity by giving only the volume and students find the side.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 6 \\ 5.6 B \end{gathered}$	Determine the volume of a rectangular prism with whole number side lengths in problems related to the number of layers times the number of unit cubes in the area of the base.	Relationship between volume of a rectangular prism, its base area, and height (the number of layers) ($V=b h$) $(B=V \div h)$ $(H=V \div B)$ Problem situations related to the number of layers times the number of unit cubes in the area of the base	- Understand that the volume of a rectangular prism can be found by multiplying the area of the base times the number of layers it takes to fill the prism Understand that the area of the base can be described as the number of cubes needed to build the first layer of the rectangular prism - Understand that the height of a rectangular prism can be described as the number of layers it takes to fill the prism - Solve a problem involving volume	Determine the volume of a rectangular prism with positive rational number side lengths.
$\begin{gathered} 7 \\ 5.7 \mathrm{~A} \end{gathered}$	Solve problems by calculating conversions within a measurement system, customary or metric.	Relationship between converting units Converting within the same measurement system, customary or metric \square Multiplication converts larger units to smaller units. - Division converts smaller units to larger units. Appropriate units based on the information considered in the mathematical and realworld problem situations Length Volume (liquid volume) and capacity Weight and mass One-step or multistep conversions within one measurement system	\square Recognize conversion presented in a realworld problem situation Understand how to convert a measurement from a larger unit to a smaller unit or a smaller unit to a larger unit within one measurement system - Solve a problem involving conversion within a measurement system - Understand how to convert two values to the same unit of measure prior to solving a problem	Convert units within a measurement system, including the use of proportions and unit rates.

Day 15.4G	Day 2 5.6A	Day 3 5.6B	Day 45.4 H	Day 5 5.4H
Huddle LT I Build concept of Volume	Mini Lesson LT 5 Volume of a cube	Mini Lesson LT 6 Volume of rectangular prism	Huddle LT 3, 4 Area/ perimeter related to volume	Independent Practice LT I, 3, 4, 5, 6
Guided Math				
Review Unit 7	Concept of Volume	Volume: Cube	Volume rectangular prism	Volume
Day 6 5.5A	Day 75.5 A	Day 85.5 A	Day 9 5.5A	Day 10 5.5A
Anticipation Guide LT 2 Vocabulary	Mini Lesson LT 2 Triangles Classify by sides and angles	Mini Lesson LT 2 Quadrilaterals Attributes	Game LT 2 Triangles Graphic Organizers	Open Sort/ Musical Shares LT 2 All other polygons
Guided Math				
Volume	Geometry vocab	Triangles	Quadrilaterals	Classify Triangles and Quads
Day II 5.5A	Day 12 5.7A	Day 13 5.7A	Day 14 5.7A	Day 15 5.7A
Anticipation Guide/Game LT 2 Generalizations: quadrilaterals	Independent Practice LT 2	Huddle LT 7 Convert measurement	Mini Lesson LT 7 Convert Measurement	Independent Practice LT 7
Guided Math				
Classify	Classify	Convert Measurement	Convert Measurement	Convert Measurement

iporily sic.

Thank you for your downloqd!

I hope this helps your students!

A portion of the materials contained in this publication were created with the use of 1,2,3 Math Fonts. And Math Clipart
Graphics by

Copyright © iPohly INC. All rights reserved by author. This product is to be used by the original downloader only. Copying for more than one teacher, classroom, department, school, or school system is prohibited. This product may not be distributed or displayed digitally for public view. Failure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA). Clipart and elements found in this PDF are copyrighted and cannot be extracted and used outside of this file without permission or license. Intended for classroom and personal use ONLY.

Whole cIass Lessons and Guided Math Groups active engagement and Games Intervention and Enrichment EXit TiCKE+S

