ipolily TYC.

4th Grade

FRACTIONS

Created By:
Misty Pohly

Whole class Lessons and GUided Math Groups Active Ensagement and Games Intervention and Enrichment EXit Tickets

I Plan ~ You Teach

Helping you live your life AND

be the math teacher that gets results
are you Ready for Help?
Click the links for Lesson Plans that $\quad 4^{\text {th }}$ Grade Math align with TEXAS TEKS!

2 2nd $^{\text {Grade Math }}$ Lesson Plans Lesson Plans
$3{ }^{\text {rd }}$ Grade Math Lesson Plans

$5^{\text {th }}$ Grade Math Lesson Plans

I SEE YOU~

- struggling each week to write lesson plans that meet the rigor of the TEKS.
- searching endlessly for resources that will help kids learn math while being challenged and engaged.
- staying late everyday after school working on plans and creating everything from scratch.
You are exhausted from working with students all day, and still have to prep, write and create.

I SEE YOU~
SACRIFICING your time with your family and friends
to ensure success for ALL of OUR Children.
Want to know when sales are happening? Click links to follow
(P)
©iPohly INC

Fractions							
Name	1	2	3	4	5	6	7

Fractions						
Name	8	9	10	॥	12	13

LT	Statement	1	2	3	4	Evidence
I	I can relate decimals to fractions that name tenths and hundredths.					
2	I can represent a fraction $\frac{a}{b}$ as a sum of fractions $\frac{1}{b}$, where a and b are whole numbers and $b>0$, including when $a>b$.					
3	I can decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models.					
4	I can decompose a fraction in more than one way recording results with symbolic representations.					
5	I can determine if two given fractions are equivalent using a variety of methods.					
6	I can compare two fractions with different numerators and different denominators					
7	I can represent the comparison using the symbols $>=$, or <.					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

LT	Statement	1	2	3	4	Evidence
8	I can represent addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line.					
9	I can represent addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the properties of operations.					
IO	I can solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line.					
II	I can solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the properties of operations.					
I2	I can evaluate the reasonableness of sums and differences of fractions using benchmark fractions $0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and I, referring to the same whole.					
	I can represent fractions and decimals to the tenths or hundredths as distances from zero on a number line.					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 1 \\ 4.26 \end{gathered}$	Relate decimals to fractions that name tenths and hundredths.	\square Proper \square Improper \square Mixed Number Concrete and Visual Models Number line (horizontal/vertical) \square values less than one \square values greater than one \square values between tick marks Area model (grids) same whole less than one greater than one Decimal disks same whole less than one greater than one Base-IO blocks same whole less than one greater than one Money relationships of a dollar	Activities to include: \square Relationships between a number in fraction form and the place value positions of the number in decimal form \square Place values of digits given a decimal number in standard form \square Fractions equivalent and decimal value \square Decimal value presented using a visual model	- Equivalent fractions, decimals, and percents to show equal parts of the same whole.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 2 \\ 4.3 \mathrm{~A} \end{gathered}$	Represent a fraction $\frac{a}{b}$ as a sum of fractions $\frac{1}{b}$, where a and b are whole numbers and b > 0 , including when $a>b$.	\square Relationship between the whole and the part \square Represent an amount less than, equal to, or greater than I using a sum of unit fractions Concrete Linear Model Fraction bars Customary ruler Linking cube trains Folded paper strips Concrete Area Models Fraction circles Fraction squares Pattern blocks Concrete models of a set of objects \square Pattern blocks \square Color tiles \square Counters Pictorial models \square Fraction strips Fraction bar models Number lines	Activities to incluce: \square Fractions can be represented as a sum of unit fractions - Fraction as a sum of unit fractions using an expression	Extend representation s for division to include fraction notation such as represents the same number as $a \div b$ where b $\neq 0$.

Learning Targe \dagger	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 3 \\ 4.3 B \end{gathered}$	Decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models.	Concrete Linear Model Fraction bars Customary ruler Linking cube trains Folded paper strips Concrete Area Models Fraction circles Fraction squares Pattern blocks Concrete models of a set of objects Pattern blocks Color tiles C Counters Pictorial models Fraction strips Fraction bar models Number lines	Activities to include: \square Use a pictorial model to represent an improper fraction [. Decompose a fraction in to a sum of fractions [. Represent equivalent fractions using an equation I Interpret and represent a pictorial model of a fraction using symbolic notation	\square Use decomposition to write mixed numbers.
$\begin{gathered} 4 \\ 4.3 B \end{gathered}$	Decompose a fraction in more than one way recording results with symbolic representations.			
$\begin{gathered} 5 \\ 4.3 C \end{gathered}$	Determine if two given fractions are equivalent using a variety of methods.	Variety of methods \square Number line - Area model I Strip diagram Equivalency using a numeric approach LCM \square LCD I. Simplify each fraction Equivalency using numeric reasoning Relationship between numerators and denominators	Use concrete models Fraction bars Customary ruler Linking cube trains Folded paper strips Fraction circles Fraction squares Pattern blocks Color Tiles Counters Number Lines	Compare using common numerator.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 6 \\ 4.3 D \end{gathered}$	Compare two fractions with different numerators and different denominators	Benchmarks \square Same size whole Common denominators L Larger numerator= larger fraction - Smaller numerator = smaller fraction LCM LCD Common Numerators L Larger denominator = smaller fraction - Smaller denominator= larger fraction LCM LCD Concrete or pictorial models Same size whole - Shaded portions may or may not be next to each other	- Activities to include: - Compare fractions with different numerators and different denominators - Form equivalent fractions Compare fractions - Less than a given fraction - Greater than a given fraction - Represent the comparison symbolically C. Create fraction models using the same size whole and compare the shaded portion of each model	\square Use denominators that are not common
$\begin{gathered} 7 \\ 4.3 D \end{gathered}$	Represent the comparison using the symbols >, =, or <	Inequality words and comparison symbols - Greater than (>) L. Less than (<) Equality words and symbol - Equal to ($=$)		

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?	
$\begin{gathered} 8 \\ 4.3 \mathrm{E} \end{gathered}$	Represent addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line.	Concrete objects and pictorial models Shapes Pattern blocks C Circles I Squares \square Rectangles Strip models \square Fraction strips	Interpret a pictorial model of \square A set of real-world objects - Strip diagram \square Pictorial model Represent a problem situation involving fractions Expression I Strip diagram [Pictorial model \square Improper fraction Represent a problem involving \square Addition \square Subtraction Recognize \square Addition \square Subtraction Solve Real World Problems \square Addition I Subtraction \square Recognize different problem types	Represent and solve addition and subtraction of fractions with unequal denominators referring to the same whole using objects and pictorial models and properties of operations.	
	Represent addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the properties of operations.	Properties of operations C Commutative property of addition - Associative property of addition			
$\begin{gathered} 10 \\ 4.3 \mathrm{E} \end{gathered}$	Solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line.	\square Recognition of addition and subtraction.			
$\begin{gathered} \\| \\ 4.3 E \end{gathered}$	Solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the properties of operations.	\square Recognition of addition and subtraction. Properties of operations - Commutative property of addition - Associative property of addition			

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{aligned} & 12 \\ & 4.3 F \end{aligned}$	Evaluate the reasonableness of sums and differences of fractions using benchmark fractions O, $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and l , referring to the same whole.	Fractional relationships \square Relationship between the whole and the part \square Referring to the same whole Estimate the reasonableness of sums and differences using fraction benchmarks \square Mathematical and real-world problem situations \square With and without models Evaluate the reasonableness of sums and differences using fraction benchmarks \square Mathematical and real-world problem situations \square With and without models	Recognize \square Addition - Subtraction - Determine an unknown fractional part of a whole when given two fractional parts - Compare a fraction to the benchmark fractions- $0, \frac{1}{4}$ $\frac{1}{2}, \frac{3}{4}$, and I , \square Describe the comparison of a sum of fractions to a benchmark fraction	I Add and subtract positive rational numbers fluently.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 13 \\ 4.36 \end{gathered}$	Represent fractions and decimals to the tenths or hundredths as distances from zero on a number line.	Relationship between a fraction \square using a strip diagram to a number line Relationship between a decimal \square using a strip diagram to a number line Fractions or decimals as distances from zero on a number line greater than I \square Beginning with a number other than zero Relationship between fractions as distances from zero on a number line to fractional measurements as distances from zero on \square Customary ruler \square Yardstick - Measuring tape \square Metric ruler \square Meter stick	Use concrete models I Number Lines Customary ruler \square Yardstick [. Measuring tape \square Metric ruler - Meter stick - Strip Diagram	- Represent the value of the digit in decimals through the thousandths using expanded notation and numerals.

$\begin{aligned} & \text { Day I } \\ & 4.2 \mathrm{G} \end{aligned}$	$\begin{gathered} \text { Day } 2 \\ 4.2 G \end{gathered}$	$\begin{gathered} \text { Day } 3 \\ 4.3 G \end{gathered}$	$\begin{gathered} \text { Day } 4 \\ \text { 4.3ABCD } \end{gathered}$	$\begin{gathered} \text { Day } 5 \\ 4.3 A \end{gathered}$
Math Huddle LT I Relating Decimals to Fractions	Mini Lesson LT I Relating Decimals to Fractions	Mini Lesson LT I3 Decimals and Fractions on a number line	Math Huddle LT 2- 7 Fractions	Mini Lesson LT 2 Unit Fractions
Guided Math				
Reteach Unit 5	LT I	LT I3	LT I3	LT 2
$\begin{gathered} \text { Day } 6 \\ 4.3 B \end{gathered}$	$\begin{gathered} \text { Day } 7 \\ \text { 4.3C, 4.3F } \end{gathered}$	$\begin{gathered} \text { Day } 8 \\ 4.3 C \end{gathered}$	$\begin{gathered} \text { Day } 9 \\ 4.3 C \end{gathered}$	$\begin{gathered} \text { Day IO } \\ 4.3 \mathrm{D} \end{gathered}$
Mini Lesson LT 3,4 Decompose Fractions	Math Huddle LT 5, I2 Equivalent Fractions Simplest Form Benchmark Fractions	Mini Lesson LT 5 Equivalent Fractions Number Lines Area Model	Mini Lesson LT 5 Equivalent Fractions Common Denominator Numerical	Independent Practice LT 5 Equivalent Fractions
Guided Math				
LT 3, 4	LT 5	LT 5	LT 5	LT 5

Fractions

$\begin{aligned} & \text { Day II } \\ & 4.3 \mathrm{l} \end{aligned}$	$\begin{gathered} \text { Day } 12 \\ 4.3 D \end{gathered}$	$\begin{gathered} \text { Day I3 } \\ 4.3 D \end{gathered}$	$\begin{gathered} \text { Day } 14 \\ \text { 4.3E, 4.3F } \end{gathered}$	$\begin{gathered} \text { Day } 15 \\ \text { 4.3E, 4.3F } \end{gathered}$
Mini Lesson LT 6,7 Compare Fractions Concrete Models	Mini Lesson LT 6,7 Compare Fractions Common Denominator	Independent Practice LT 6,7 Compare Fractions	Game LT I2 Representing Benchmark Fractions	Math Huddle LT 8, 9, I2 Representing Addition and Subtraction Set
Guided Math				
LT 6, 7	LT 6, 7	LT 6, 7	LT I2	LT 8, 9, 12
$\begin{gathered} \text { Day } 16 \\ \text { 4.3E, 4.3F } \end{gathered}$	$\begin{gathered} \text { Day I7 } \\ \text { ५.3E, } 4.3 F \end{gathered}$	$\begin{gathered} \text { Day } 18 \\ 4.3 \mathrm{E}, 4.3 F \end{gathered}$		
Mini Lesson LT IO, II, I2 Solve Addition and Subtraction Improper	Game LT IO, II, I2 Represent \& Solve Addition and Subtraction	Independent Practice LT IO, II, I2 Solve Addition and Subtraction		
Guided Math	Guided Math	Guided Math		
LT IO, II, I2	LT IO, II, I2	LT IO, II, I2		

Fractions

EPRAlly Fqu.

Thank you for your downloqd!

I hope this helps your students!

A portion of the materials contained in this publication were created with the use of 1,2,3 Math Fonts. And Math Clipart

Graphics by

Copyright © iPohly INC. All rights reserved by author. This product is to be used by the original downloader only. Copying for more than one teacher, classroom, department, school, or school system is prohibited. This product may not be distributed or displayed digitally for public view. Failure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA). Clipart and elements found in this PDF are copyrighted and cannot be extracted and used outside of this file without permission or license. Intended for classroom and personal use ONLY.

Whole class Lessons and Guided Math Groups Active engagement and Games Intervention and Enrichment EXit Tickets

