tpolily r cic.

3rd Grade

 Created By: Misty Pohly APPLICATION OF MULTIPLICATION AND DIVISION

Whole class Lessons and Guided Math Groups Active ensagement and Games intervention and Enrichment

EXit Tickets

I Plan ~ You Teach

Helping you live your life AND

be the math teacher that gets results
are you Ready for Help?
Click the links for Lesson Plans that $\quad 4^{\text {th }}$ Grade Math align with TEXAS TEKS!

2 2nd $^{\text {Grade Math }}$ Lesson Plans Lesson Plans
$3{ }^{\text {rd }}$ Grade Math Lesson Plans

$5^{\text {th }}$ Grade Math Lesson Plans

I SEE YOU~

- struggling each week to write lesson plans that meet the rigor of the TEKS.
- searching endlessly for resources that will help kids learn math while being challenged and engaged.
- staying late everyday after school working on plans and creating everything from scratch.
You are exhausted from working with students all day, and still have to prep, write and create.

I SEE YOU~
SACRIFICING your time with your family and friends
to ensure success for ALL of OUR Children.
Want to know when sales are happening? Click links to follow
(P)
©iPohly INC
0

5

Application of Multiplication and Division

Nome		2	3	4	5	6	7	8		9	10	"	12	13	14
					Hony										

\qquad and Division

LT	Statement	1	2	3	4	Evidence
I	I can use strategies to multiply a two-digit number by a one-digit number-mental math					
2	I can use strategies to multiply a two-digit number by a one-digit number-.partial products					
3	I can use strategies to multiply a two-digit number by a one-digit number-.properties					
4	I can use the standard algorithm, to multiply a two-digit number by a one-digit number					
5	I can determine the quotient using the relationship between multiplication and division					
6	I can determine if a number is even or odd using divisibility rules.					
7	I can solve one-step and two-step problems involving multiplication and division within IOO using strategies based on objects					
	I can solve one-step and two-step problems involving multiplication and division within IOO using strategies based on pictorial models, including arrays, area models, and equal groups					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

\qquad and Division

LT	Statement	I	2	3	4	Evidence
9	I can solve one-step and two-step problems involving multiplication and division within IOO using strategies based on properties of operations.					
IO	I can solve one-step and two-step problems involving multiplication and division within I00 using strategies based on recall of facts.					
	I can represent and solve one- and two- step multiplication and division problems within IOO using arrays					
I2	I can represent and solve one- and two- step multiplication and division problems within IOO using strip diagrams					
I3	I can represent and solve one- and two- step multiplication and division problems within IOO using equations.					
	I can determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row.					

1	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

\begin{tabular}{|c|c|c|c|c|}
\hline Learning Target \& What do we want students to learn? \& How will we know if they learned it? \& What will we do if they don't? \& What will we do if they already know it? \\
\hline \[
\begin{gathered}
1 \\
3.4 G
\end{gathered}
\] \& Use strategies to multiply a two-digit number by a one-digit number-mental math \& \begin{tabular}{l}
Basic facts
Multiplication facts up to \(10 \times 10\) \\
Mental math
Accurate computation without the aid of paper, pencil, or other tools
\end{tabular} \& \multirow[t]{3}{*}{\begin{tabular}{l}
- Recognize multiplication presented in a real-world problem situation \\
[. Understand how to multiply a two-digit number by a one-digit number involving regrouping \\
[Solve a one-step problem involving multiplication
\end{tabular}} \& \multirow[t]{3}{*}{Use strategies and algorithms, including the standard algorithm, to multiply up to a four-digit number by a one-digit number and to multiply a twodigit number by a two-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties.} \\
\hline \[
\begin{gathered}
2 \\
3.4 G
\end{gathered}
\] \& Use strategies to multiply a two-digit number by a one-digit number-.partial products \& Partial products
Decomposing the factor(s) into smaller parts, multiplying the parts, and combining the intermittent products \& \& \\
\hline \[
\begin{gathered}
3 \\
3.46
\end{gathered}
\] \& Use strategies to multiply a two-digit number by a one-digit number-.properties \& \begin{tabular}{l}
Properties of operations \\
Commutative property of multiplication \(a \times b=\) c; therefore, \(b \times a=\) c
Associative property of multiplication

$$
\begin{aligned}
& a \times b \times c=(a \times b) \times \\
& c=a \times(b \times c)
\end{aligned}
$$

Distributive property of multiplication $a \times(b$ $+c)=(a \times b)+(a \times$ c)
\end{tabular} \& \&

\hline
\end{tabular}

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 4 \\ 3.46 \end{gathered}$	Use the standard algorithm, to multiply a two-digit number by a one-digit number	Standard algorithm \square Standardized steps or routines used in computation - With and without regrouping	See LT I-3	See LT I-3
$\begin{gathered} 5 \\ 3.4 \mathrm{~J} \end{gathered}$	Determine the quotient using the relationship between multiplication and division	Relationship between division and an unknown factor problem \square Inverse relationship between multiplication and division $\square a \div b$ can be determined by $b \times \ldots=a$ or ${ }^{-} \times b=a$ Fact families - related number sentences using the same set of numbers $a \times b=c \quad c \div a=b$ $b \times a=c \quad c \div b=a$ Division problem types Partitive division \square Total amount known \square Number of groups known \square Size of measure of each group unknown Quotative division \square Total amount known \square Size or measure of each group known \square Number of groups unknown Division involving 0 \square Zero divided by any number equals 0 . \square Relationship between multiplication and division applies. $\square 0 \div a=0$ because $0 \times a=0$ \square Any number divided by 0 is undefined. \square Relationship between multiplication and division does not apply when dividing by 0 . $\square a \div 0=$? (no possible quotient) because? $\times 0 \neq a$	\square Recognize division presented in a real-world problem situation \square Understand the relationship between a division fact and its related multiplication fact Represent and solve a division problem using the related multiplication fact	

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 6 \\ 3.4 I \end{gathered}$	Determine if a number is even or odd using divisibility rules.	Whole numbers (0 100,000) Even number \square If the digit in the ones place a whole number is divisible by 2 , then the whole number is divisible by 2 and therefore even. Odd number \square If the digit in the ones place a whole number is not divisible by 2 , then the whole number is not divisible by 2 and therefore odd. Mathematical and realworld problems	U Understand that a number is divisible by 2 if the number when divided by 2 has no remainder Understand that a number is not divisible by 2 if the number when divided by 2 has a remainder of I Understand that a number is even if the number is divisible by 2 and odd if it is not divisible by 2 Understand that if the digit in the ones place of a whole number is divisible by 2 , then the number is even Determine if a number is even or odd using the divisibility rule of 2	Introduce divisibility rules for 5 and $I O$.
$\begin{gathered} 7 \\ 3.4 K \end{gathered}$	Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on objects	Multiplication problem types \square Multiplication product unknown - Multiplication factor unknown Division problem types Partitive division \square Total amount known \square Number of groups known \square Size or measure of each group unknown Quotative division - Total amount known \square Size or measure of each group known \square Number of groups unknown Concrete objects \square Base-IO blocks, counters, color tiles, ètc.	Recognize multiplication or division presented in a real-world problem situation Understand how to multiply a two-digit number by a one-digit number involving regrouping Understand how to divide a two-digit number by a one-digit Solve a one-step or two-step problem involving the four operations.	Represent the quotient of up to a four-digit whole number divided by a one-digit whole number using arrays, area models, or equations. Introduce the standard algorithm for division. Introduce interpreting remainders.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 8 \\ 3.4 K \end{gathered}$	Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on pictorial models, including arrays, area models, and equal groups	Multiplication problem types \square Multiplication product unknown - Multiplication factor unknown Division problem types \square Partitive division \square Quotative division Pictorial models Array Area model Equal groups	\square Recognize multiplication or division presented in a real-world problem situation Understand how to multiply a two-digit number by a one-digit number involving regrouping	Represent the quotient of up to a four-digit whole number divided by a one-digit whole number using arrays, area models, or equations. Introduce the
$\begin{gathered} 9 \\ 3.4 K \end{gathered}$	Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on properties of operations.	Multiplication problem types \square Multiplication product unknown - Multiplication factor unknown Division problem types \square Partitive division (Quotative division Properties of Operations \square Commutative property of multiplication \square Associative property of multiplication \square Distributive property of multiplication	Understand how to divide a two-digit number by a one-digit Solve a one-step or two-step problem involving the four operations.	standard algorithm for division. Introduce interpreting remainders.
$\begin{gathered} 10 \\ 3.4 \mathrm{~K} \end{gathered}$	Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on recall of facts.	Recall of facts Multiplication facts up to 10×10 Division facts up to 100 $\div 10$ Mathematical and realworld problem situations with multiple operations - One-step and two-step problems Equation(s) to reflect solution pegperisk INC		15

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?	
$\begin{gathered} \\| \\ 3.5 B \end{gathered}$	Represent and solve one- and two-step multiplication and division problems within 100 using arrays	- One-step problems \square Representations using arrays \square Relationship between quantities represented and problem situation - Arrangement of a set of objects in rows and columns	Recognize multiplication or division presented in a real-world problem situation Understand how to interpret a strip diagram to identify the dividend, the divisor, and the	Represent multi-step problems involving the four operations with whole numbers using strip diagrams and equations	
$\begin{gathered} 12 \\ 3.5 B \end{gathered}$	Represent and solve one- and two-step multiplication and division problems within IOO using strip diagrams	\square Representations using strip diagrams \square Relationship between quantities represented and problem situation \square Linear arrangement used to illustrate number relationships	quotient in a division situation Represent a problem involving multiplication or division using a strip diagram Understand the relationship	standing for the unknown quantity.	
$\begin{gathered} 13 \\ 3.5 B \end{gathered}$	Represent and solve one- and two-step multiplication and division problems within IOO using equations.	Equation \& Expression \square Relationship between quantities represented and problem situation \square Equal sign at beginning or end - Unknown in any position Proper equality representation Multi-step solutions represented with one number sentence, or equation, per step - All expressions separated by equal signs must be equivalent.	description of a problem situation and the symbols \square represented in an equation/number sentence Represent a two-step problem involving multiplication and division using an equation Understand how an array can be used to represent a multiplication situation Represent a problem involving multiplication using an array	16	

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 14 \\ 3.6 C \end{gathered}$	Determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row.	Concrete models - Color tiles to measure square inches - Centimeter cubes to measure square centimeters Pictorial models - Inch grid paper to measure square inches - Centimeter grid paper to measure square centimeters \square Pictorial representations with grid lines to represent customary or metric square units - Pictorial representations with partial grid lines to represent customary or metric square units Area determined when given a rectangle with grid lines or partial grid lines Whole unit side lengths Area determined when given the side lengths of a rectangle related to number of rows and number of unit squares in each row - Whole unit side lengths	- Recognize the dimensions of a rectangle presented in a diagram \square Understand how to determine area of a rectangle by multiplying the number of rows times the number of square units in each row - Understand the meaning of the phrase, "The rest of the model will also be divided into squares of the same size." \square Determine the area of a rectangle \square Understand the meaning of the phrase "equal-size squares" \square Determine the areas of a set of rectangles - Understand the meaning of the phrase "each square tile has a side length of I	- Use models to determine the formulas for the perimeter of a rectangle (। $+w+1+w$ or 21 $+2 w$), including the special form for perimeter of a square ($4 s$ s) and the area of a rectangle ($1 \times$ w).

Day I	Day 2	Day 3	Day 4	Day 5		
Mini Lesson LT I Area	Math Huddle Mini Lesson LT I, 3 Properties of Multiplication	Mini Lesson LT I,2 Partial Products Area Model	Mini Lesson LT 4 Standard Algorithm	Game LT 5 Relationship between Division and Multiplication		
Reteach	LT 14	LT I, 3	LT 2, 3	LT 4		
Day 6	Day 7	Day 8	Day 9	Day 10		
Mini Lesson LT 5, 6 Property of 0 Divisibility Rule for 2	Mini Lesson LT 7, 8, 10 Problem Solving 2 Step	Mini Lesson LT q, IO Problem Solving 2 Step	Mini Lesson LT II, I2 Problem Solving Strip Diagrams	Mini Lesson LT I3 Problem Solving Equations		
LT 5	LT 7-IO	LT 7-I0	LT \|	-I3	LT \|	-13

APPLICATION OF

iporily sic.

Thank you for your dowhloqd!

I hope this helps your students!

A portion of the materials contained in this publication were created with the use of 1,2,3 Math Fonts. And Math Clipart
Graphics by

Copyright © iPohly INC. All rights reserved by author. This product is to be used by the original downloader only. Copying for more than one teacher, classroom, department, school, or school system is prohibited. This product may not be distributed or displayed digitally for public view. Foilure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA). Clipart and elements found in this PDF are copyrighted and cannot be extracted and used outside of this file without permission or license. Intended for classroom and personal use ONLY.

Whole class Lessons and GUided Math Groups active engagement and Games Intervention and Enrichment EXit TiCKE + S

