ipolily r cic.

$3^{r d}$ Grade

ADDITION AND

SUBTRACTION

Whole class Lessons and Guided Math Groups Active engagement and Games Intervention and Enrichment EXit Tickets

I Plan ~ You Teach

Helping you live your life AND

be the math teacher that gets results
are you Ready for Help?
Click the links for Lesson Plans that $\quad 4^{\text {th }}$ Grade Math align with TEXAS TEKS!

2 2nd $^{\text {Grade Math }}$ Lesson Plans Lesson Plans
$3{ }^{\text {rd }}$ Grade Math Lesson Plans

$5^{\text {th }}$ Grade Math Lesson Plans

I SEE YOU~

- struggling each week to write lesson plans that meet the rigor of the TEKS.
- searching endlessly for resources that will help kids learn math while being challenged and engaged.
- staying late everyday after school working on plans and creating everything from scratch.
You are exhausted from working with students all day, and still have to prep, write and create.

I SEE YOU~
SACRIFICING your time with your family and friends
to ensure success for ALL of OUR Children.
Want to know when sales are happening? Click links to follow
(P)
©iPohly INC
0

5

Addition and Subtraction

${ }_{\text {Nome }}$	'	2		${ }^{3}$			5	6	7			9	10			
								-								
								-								
								-								

\qquad

LT	Statement	1	2	3	4	Evidence
\|	I can represent a number on a number line as being between two consecutive multiples of 10 ; 100 ; 1,000; or 10,000.					
2	I can use words to describe relative size of numbers in order to round whole numbers.					
3	I can round to the nearest 10 or 100 to estimate solutions to addition and subtraction problems.					
4	I can use compatible numbers to estimate solutions to addition and subtraction problems.					
5	I can solve with fluency one-step and two-step problems involving addition and subtraction within I,000 using strategies based on place value.					
6	I can solve with fluency one-step and two-step problems involving addition and subtraction within I,000 using strategies based on properties of operations.					
7	I can solve with fluency one-step and two-step problems involving addition and subtraction within 1,000 using strategies based on the relationship between addition and subtraction.					

I	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

LT	Statement	1	2	3	4	Evidence	
8	I can represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models.						
9	I can represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using number lines.						
10	I can represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using equations.						
\\|	I can determine the value of a collection of coins and bills.						
12	I can determine the perimeter of a polygon						

I	2	3	4
I have no idea how to do this.	I can do this with some help.	I can do this by myself	I can teach someone to do this.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 2 \\ 3.2 C \end{gathered}$	Represent a number on a number line as being between two consecutive multiples of IO; 100; 1,000; or 10,000. Use words to describe relative size of numbers in order to round whole numbers.	- Number lines multiples of 10 Number lines multiples of 100 Number lines multiples of 1,000 Number lines multiples of 10,000 Words to know: closer to, less than halfway between, more than halfway between, halfway between, nearly, about Round to the nearest 10,100 , 1,000, 10,000 on a number line	Activities to include: identifying a point on a number line as being between two consecutive multiples. Activities to include: points less than halfway between two consecutive multiples would round to the lower multiple. Activities to include: points more than halfway between two consecutive multiples would round to the higher multiple. Activities to include: Identifying the value of a point on a number line rounded to the nearest multiple.	Explain how to identify a point on a number line as being between two consecutive multiples.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 3 \\ 3.4 B \end{gathered}$	Round to the nearest 10 or 100 to estimate solutions to addition and subtraction problems.	\square Round to the nearest IO, or 100 on a number line \square Round numbers to a common place then compute.	Activities to include: Recognizing addition or subtraction in one- or twostep problems. Estimating numbers using rounding.	Round to the nearest IO, 100, or 1,000 or use compatible numbers to estimate solutions involving whole numbers.
$\begin{gathered} 4 \\ 3.4 B \end{gathered}$	Use compatible numbers to estimate solutions to addition and subtraction problems.	Compatible Numbers Make IO strategy Make 0 strategy	Activities to include: Addition or subtraction in one- or twostep problems. Estimating numbers using compatible numbers.	

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 5 \\ 3.4 \mathrm{~A} \end{gathered}$	Solve with fluency onestep and two-step problems involving addition and subtraction within 1,000 using strategies based on place value.	- One-step and two-step problems [Addition strategies based on place value - Subtraction strategies based on place value		Add and subtract whole numbers using the standard algorithm.
$\begin{gathered} 6 \\ 3.4 \mathrm{~A} \end{gathered}$	Solve with fluency onestep and two-step problems involving addition and subtraction within 1,000 using strategies based on properties of operations.	- One-step and two-step problems] Addition strategies based on properties of operations [Subtraction strategies based on properties of operations		
$\begin{gathered} 7 \\ 3.4 \mathrm{~A} \end{gathered}$	Solve with fluency onestep and two-step problems involving addition and subtraction within 1,000 using strategies based on the relationship between addition and subtraction.	[. One-step and two-step problems - Addition strategies based on the relationship between addition and subtraction - Subtraction strategies based on the relationship between addition \qquad		

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 8 \\ 3.5 \mathrm{~A} \end{gathered}$	Represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models.	One- and two-step Problems Base-10 models Strip diagrams Unknown in any position	Activities to include: Addition or subtraction presented in a real-world problem situation Relationships between the word problem and a strip diagram Identify the whole, the parts, and the unknown in oneand two-step addition and subtraction situation One or twostep problem involving addition and subtraction using a strip diagram	- Represent multi-step problems with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 9 \\ 3.5 \mathrm{~A} \end{gathered}$	Represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using number lines.	One- and two-step Problems Unknown in any position Number lines Horizontal Vertical Open Closed	Activities to include: Addition or subtraction presented in a real-world problem situation Relationships between the word problem and a number line. Identify the minuend, the subtrahend, and the difference in a subtraction situation on a number line. Identify the addends and the sum in a addition situation on a number line Represent a one or two-step problem involving addition and subtraction using a number line	Represent multi-step problems with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?
$\begin{gathered} 10 \\ 3.5 \mathrm{~A} \end{gathered}$	Represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using equations.	One- and two-step Problems Equal sign at beginning or end Unknown in any position	[Recognize addition or subtraction presented in a real-world problem situation Understand the relationship between the description of a problem situation and the symbols represented in an equation Understand a subtraction situation can be represented using a related fact family addition equation Represent a one or two-step problem involving subtraction using an equation A + B + C A + B - C A - B + C A - B - C	[] Represent multi-step problems with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity.

Learning Target	What do we want students to learn?	How will we know if they learned it?	What will we do if they don't?	What will we do if they already know it?	
$\begin{gathered} \\| \\ 3.4 C \end{gathered}$	Determine the value of a collection of coins and bills.	Determine the total value of the collection of coins in cents. - Determine the total value of the collection of bills in dollars. Determine the value of the collection of coins and bills combined.	Activities to include: Pictorial representations of bills and coins and the value of each. \square Count a collection of bills and coins to find the total amount.	\square Solve problems that involve operations with money.	
$\begin{gathered} 12 \\ 3.7 \mathrm{~B} \end{gathered}$	Determine the perimeter of a polygon	Recognition of perimeter real-world problem situations Whole number side lengths Polygons (regular or irregular) Add all side lengths in any order to determine perimeter using the properties of addition.	Activities to include: Calculate the perimeter of a polygon as the sum of all side lengths - Error analysis from charts and tables.	- Use models to determine the formulas for the perimeter of a rectangle $(1+w+1+w$ or $21+2 w$), including the special form for perimeter of a square ($4 s$).	

$\begin{aligned} & \text { Day I } \\ & 3.2 \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Day } 2 \\ 3.2 C \end{gathered}$	Day 3 $3.4 B$	$\begin{gathered} \text { Day } 4 \\ 3.4 B \end{gathered}$	$\begin{gathered} \text { Day } 5 \\ 3.2 C, 3.4 B \end{gathered}$
Mini Lesson LT I Represent on Number Line	Mini Lesson LT 2 Use Words to Describe Relative Size	Mini Lesson LT 3 Round Numbers to the Nearest IO or 100	Mini Lesson LT 4 Compatible Numbers	Game LT I-4
Guided Math				
Compose and decompose	LT I	LT 2	LT 3	LTY
$\begin{gathered} \text { Day } 6 \\ 3.4 C \end{gathered}$	$\begin{gathered} \text { Day } 7 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day } 8 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day } 9 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day IO } \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$
Game Coin Scoot LT II Collection of Coins	Math Huddle: LT 5, 8 Place Value Models	Mini Lesson LT 6, 8 Properties Models	Mini Lesson LT 7, 8 Relationships Models	Mini Lesson LT 5, 9 Place Value Number Lines
Guided Math				
LT \\|	LT 5, 8, 9, 10 Joining - Result unknown - Change unknown - Start unknown	LT 5, 8, 9, IO Joining - Result unknown - Change unknown - Start unknown	LT 5, 8, 9, 10 Separating - Result unknown - Change unknown - Start unknown	LT 5, 8, 9, 10 Separating - Result unknown - Change unknown - Start unknown

AdDITION AND SUBTRACTION

$\begin{gathered} \text { Day II } \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day } 12 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day I3 } \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day } 14 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Day } 15 \\ 3.4 \mathrm{~A}, 3.5 \mathrm{~A} \end{gathered}$
Mini Lesson LT 6, 7, 9 Properties Relationships Number Lines	Independent Practice LT 5-9	Mini Lesson LT 5, IO Place Value Equations	Mini Lesson LT 6, IO Properties Equations	Mini Lesson LT 7, IO Relationships Equations
Guided Math				
LT 5, 8, 9, IO Part-Part- Whole - Whole unknown - Part unknown	LT 5, 8, 9, IO Part-Part- Whole - Whole unknown - Part unknown	LT 5, 8, 9, 10 Additive Comparison - Difference unknown - Bigger unknown - Smaller unknown	LT 5, 8, 9, 10 Additive Comparison - Difference unknown - Bigger unknown - Smaller unknown	LT 5, 8, 9, IO Mixed Problem Types
$\begin{gathered} \text { Day } 16 \\ 3.7 B \end{gathered}$	$\begin{gathered} \text { Day } 17 \\ 3.7 B \end{gathered}$	$\begin{aligned} & \text { ADDITION AND } \\ & \text { SUBTRACTION } \end{aligned}$		
Mini Lesson LT 12 Determine Perimeter	Independent Practice LT I2 Determine Perimeter			
Guided Math	Guided Math			
LT I2	LT I2			

Thank you for your dowhlocd!

I hope this helps your students!

A portion of the materials contained in this publication were created with the use of $1,2,3$ Math Fonts. And Math Clipart
Graphics by

Copyright © iPohly INC. All rights reserved by author. This product is to be used by the original downloader only. Copying for more than one teacher, classroom, department, school, or school system is prohibited. This product may not be distributed or displayed digitally for public view. Failure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA). Clipart and elements found in this PDF are copyrighted and cannot be extracted and used outside of this file without permission or license. Intended for classroom and personal use ONLY.

Whole class Lessons and Guided Math Groups active engagement and Games Intervention and Enrichment EXit TiCKe+S

